Voltage-dependent calcium currents in trigeminal motoneurons of early postnatal rats: modulation by 5-HT receptors.
نویسندگان
چکیده
Trigeminal motoneurons relay the final output signals generated within the oral-motor pattern generating circuit(s) to muscles for execution of various motor patterns. In recent years, these motoneurons were shown to possess voltage dependent nonlinear membrane properties that allow them to actively participate in sculpting their final output. A complete understanding of the factors controlling trigeminal motoneuronal (TMN) discharge during oral-motor activity requires, at a minimum, a detailed understanding of the palette of ion channels responsible for membrane excitability and a determination of whether these ion channels are targets for modulation. Toward that end, we studied in detail the properties of calcium channels in TMNs and their susceptibility to modulation by 5-HT in rat brain slices. We found that based on pharmacological and voltage-dependent properties, high-voltage-activated (HVA) N-type [omega-conotoxin GVIA (omega-CgTX)]-sensitive, and to a lesser extent P/Q-type [omega-agatoxin IVA (omega-Aga IVA)]-sensitive, calcium channels make up the majority of the whole cell calcium current. 5-HT (5.0 microM) decreased HVA current by 31.3 +/- 2.2%, and the majority of this suppression resulted from reduction of current flow through N- and P/Q-type calcium channels. In contrast, 5-HT had no effect on low-voltage-activated (LVA) current amplitude in TMNs. HVA calcium current inhibition was mimicked by 5-CT, a 5-HT1 receptor agonist, and by R(+)-8-hydroxydipropylaminotetralin hydrobromide (8-OH-DPAT), a specific 5-HT1A agonist. The effects of 5-HT were blocked by the 5-HT1A antagonist 1-(2-methoxyphenyl)-4-[4-(2-phthalimido)butyl]piperazine hydrobromide (NAN-190) but not by ketanserin, a 5-HT(2/1C) antagonist. Under current clamp, omega-CgTX and 5-HT were most effective in suppressing the mAHP and both increased the spike frequency and input/output gain in response to current injection. Calcium current modulation by 5-HT1A receptors likely is an important mechanism to fine tune the input/output gain of TMNs in response to small incoming synaptic inputs and accounts for some of the previously reported effects of 5-HT on TMN excitability during tonic and burst activity during oral-motor behavior.
منابع مشابه
Development and serotonergic modulation of NMDA bursting in rat trigeminal motoneurons.
The development of N-methyl-D-aspartate (NMDA)-induced burst discharge in rat trigeminal motoneurons (TMNs) between postnatal days P1 and P10 was examined using whole cell patch-clamp recording methods in brain slices. Bath application of NMDA (50 microM) induced a Mg(2+)-dependent rhythmical bursting activity starting around P8. Prior to the onset of bursting, the membrane potential depolarize...
متن کامل5-HT2 receptor activation facilitates a persistent sodium current and repetitive firing in spinal motoneurons of rats with and without chronic spinal cord injury.
We examined the modulation of persistent inward currents (PICs) by serotonin (5-HT) in spinal motoneurons of normal and chronic spinal rats. PICs are composed of both a TTX-sensitive persistent sodium current (Na PIC) and a nimodipine-sensitive persistent calcium current (Ca PIC), and we focused on quantifying the Na PIC (and its action on the total PIC), which is known to be critical in enabli...
متن کاملSerotonin facilitates a persistent calcium current in motoneurons of rats with and without chronic spinal cord injury.
In the months after spinal cord transection, motoneurons in the rat spinal cord develop large persistent inward currents (PICs) that are responsible for muscle spasticity. These PICs are mediated by low-threshold TTX-sensitive sodium currents (Na PIC) and L-type calcium currents (Ca PIC). Recently, the Na PIC was shown to become supersensitive to serotonin (5-HT) after chronic injury. In the pr...
متن کاملRole of NMDA receptors and voltage-dependent calcium channels in augmenting long-term potentiation of the CA1 area in morphine-dependent rats
The involvement of NMDA receptors and voltage-dependent calcium channels in augmentation of long-term potentiation (LTP) was investigated at the Schaffer collateral CA1 pyramidal cell synapses in hippocampal slices of morphine dependent rats, using primed-burst tetanic simulation. The amplitude of the population spike and its delay were measured as indices of increase in postsynaptic excitabi...
متن کامل5-Hydroxytryptamine inhibits neuronal high-voltage-activated calcium currents in the preoptic anterior hypothalamus via 5-hydroxytryptamine 1A and 7 receptors
5-Hydroxytryptamine (5-HT) is involved in mammalian thermoregulation of the preoptic anterior hypothalamus (PO/AH), but the underlying molecular mechanisms are not fully understood. In this study, we investigated the influence of 5-HT and agonists and antagonists of the 5-HT1A, 5-HT2A, 5-HT3 and 5-HT7 receptors on voltage-gated calcium currents in the PO/AH slice with the whole-cell patch clamp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 94 3 شماره
صفحات -
تاریخ انتشار 2005